**JFK Assassination: A Probability Analysis of Unnatural
Witness Deaths**

**Richard Charnin** (**TruthIsAll)**

**Feb. 25, 2013 **

**Click this link to the most recent analysis update. **

**Original post: May
18, 2012**

There has been much discussion and controversy regarding the
large number unnatural witness deaths that occurred in the year following the
1963 JFK assassination and during the 1976-77 House Select Committee
investigation of the JFK and MLK assassinations. The deaths were a combination
of homicides, suicides, accidents and undetermined origin. The HSCA determined
that both murders were probably due to conspiracies. The**
JFK Unnatural Witness Deaths Probability Spreadsheet **covers the period from 1963-1983. Most
deaths occurred during the years in which the assassination was investigated:
1964 (Warren Commission) and 1977 (House Select Committee on Assassinations).

**THREE POSSIBILITIES**

Suppose that on Nov. 22, 1963, 1400 individuals were
selected at random from the entire

There are three possibilities. The 15 deaths were...

1) Unrelated. It was just a 1 in 167 trillion coincidence.

2) Unrelated. The individuals were selected in a scam to fool the public into believing that the assassination was a conspiracy.

3) Related. There was a common factor, a connection between them.

We can confidently rule out 1) and 2).

Then if the 15 were related, what was the connection?

*Once you have eliminated the impossible, whatever remains, however
improbable, is the truth* – Arthur Conan Doyle

**In any given year,
only one unnatural death would be expected in a random group of 1,400. **

**The probability that at
least 15 of 1,400 randomly-selected individuals would die unnaturally is 1 in
167 TRILLION (mathematical proof below). **

**In the 3 years
following the assassination, there were at least 33 unnatural deaths (only 2
would normally be expected). **

**The probability is 1.4E-33
or 1 714,705,498,316,173,300,000,000,000,000,000 **

**The odds of at least 33 UNNATURAL deaths
of 1400 in a THREE year interval is 1 in 137 TRILLION TRILLION.**

**In the 14 years
following the assassination, there were 70 unnatural deaths (11 would normally
be expected).**

**The odds of at least 70 UNNATURAL deaths
of 1400 in a FOURTEEN year interval is 1 in 714 MILLION TRILLION TRILLION.**

**That number is
greater than all of the stars in the universe and grains of sand on earth.**

**The mathematical
probabilities calculated in the JFK
Witness Deaths Database**

**There had to be a
connection between them. Approximately 70
of the 100 deaths were unnatural (all were extremely suspicious).**

**WITNESSES**

The book ** Who’s
Who in the JFK Assassination** presents vital information on each of more
than 1,400 individuals (from suspects to witnesses to investigators) related in
any way to the murders of President John F. Kennedy, Dallas Police Officer J.
D. Tippit and alleged assassin Lee Harvey Oswald on
November 22 and 24, 1963. It is based on years of research using a wealth of
data sources and a detailed analysis of the Warren Commission's twenty-six
volumes. This encyclopedic study includes entries on virtually all of the
suspects, victims, witnesses, law enforcement officials and investigators
involved in the assassination.

This is a summary of JFK-related deaths:

*http://www.spartacus.schoolnet.co.uk/JFKdeaths.htm*

The original data source is:

*http://www.assassinationresearch.com/v1n2/deaths.html*

Lee Harvey Oswald, the alleged assassin, must also be included in the list. Oswald was shot by Jack Ruby in front of millions of television viewers on Nov. 24, 1963 after claiming that he was "just a patsy". Transcripts of Oswald's interrogation were destroyed. He was conveniently disposed of before he could get a lawyer. This analysis indicates he was indeed a patsy. Ruby should also be included. He died in prison, claiming that he was injected with cancer cells because he wanted to tell the truth.

**In 1977, six top FBI
officials who were scheduled to testify before the House Select Committee died
within 6 months.**

This graph displays the probabilities of 1-16 unnatural deaths among 1,000-10,000 randomly selected individuals.

**http://richardcharnin.com/poissonjfk_17844_image001.gif**

This graph displays a table of probabilities that from 5 to 65 people in a random group of 2,000 would die UNNATURALLY in 1-15 year intervals.

**http://richardcharnin.com/JFKCalc_28023_image001.gif**

**THE **

**An actuary engaged by
the **

*Our piece about the odds against the deaths of the Kennedy witnesses
was, I regret to say, based on a careless journalistic mistake and should not
have been published. This was realized by The Sunday Times editorial staff
after the first edition - the one which goes to the United States - had gone
out, and later editions were amended. There was no question of our actuary
having got his answer wrong: it was simply that we asked him the wrong question.
He was asked ” what were the odds against 15 named people out of the population
of the United States dying within a short period of time” to which he replied -correctly - that they
were very high. However, if one asks what are the odds against 15 of those
included in the *

That settled the matter for the HSCA which did not bother to
ask

Whitaker was only partially correct: True, the probability
of 15 named individuals from the

The first was misstating the problem definition. He assumed deaths of all types. He did not indicate that the probabilities are a function of the expected number of unnatural (not total) deaths within a given year. That was obfuscation based on a false premise.

The second was error by omission: avoidance of the mathematics. Whitaker did not include mortality statistics and show the probability calculations. Why not?

Because it would prove that the actuary's calculations were justified?

**CALCULATING THE
PROBABILITY**

In fact, the answers to both questions show that in each case, the probabilities are at the vanishing point - assuming the deaths were independent events. The common factor in calculating the probability for both cases is the probability of death by unnatural causes in any given year. It is 0.000542.

1) The probability that 15 named individuals in the

2) Yes, the probability that least 15 out of 1400 persons in the Warren Commission index would die unnaturally in the year following the assassination is much higher: 1 in 167 trillion (6.0e-15).

The probability P of at least m unnatural deaths in a group of n persons during a time period t is

P(m) = f (n,t,p), where p is the probability of an unnatural death in a given year. As t increases, the probability that at least m would die of unnatural causes also increases.

Probability of an unnatural death in a given year:

suicide. 0.000107

homicide 0.000062

accidental 0.000359

undetermined 0.000014

**Total 0.000542 **

*http://www.nsc.org/news_resources/injury_and_death_statistics/Pages/InjuryDeathStatistics.aspx*

The odds of dying (lifetime):

Accidental Injury 1 in 36

Motor Vehicle Accident 1 in 100

Intentional (suicide) 1 in 121

Falling Down 1 in 246

Assault by Firearm 1 in 325

*http://www.livescience.com/3780-odds-dying.html*

**THE POISSON
DISTRIBUTION**

The Poisson distribution function is the perfect tool for
calculating the probability of a rare event. It is derived from the

There are two parameters in the Poisson probability function: the expected number (a) of unlikely events and the actual number (m). The probability is:

**P (m) = a^m * exp (-a) / m!**

**We have determined
that P =.000542 is the probability of an unnatural death in a group of 1400 in
a given year. **

**The expected number
(a) of unnatural deaths is: a = 0.7588 =
P*N = 000542*1400.**

In other words, in a given year we would normally expect slightly lower than ONE (0.7588) unnatural death in a random group of 1400 people.

But there were 15 unnatural witness deaths within one year of the assassination.

**In Excel, the
probability P of an unlikely event is calculated by the function P = POISSON
(x, a, type) , where**

** x is the number of
events; a is the expected numeric value; type is a logical value that
determines the form of the probability distribution (discrete or cumulative) **

Use the Poisson formula to compute the probability of **exactly** 15 unnatural deaths for N =
1400 witnesses in one year:

Once again, the actual calculation is:

**a = 0.7588 = P*N =
000542*1400**

**Using the spreadsheet
function, **

**P (15) = Poisson (15,
0.7588, false) = 5.70e-15**

**Or using the formula,
**

**P (15) = 0.7588^15 *
exp (-.7588) / 15! **

**P (15) = 1 in
175,441,539,952,741 **

**P = 1 in 175
TRILLION!**

**But we need the
probability of AT LEAST 15 unnatural deaths - not exactly 15. It’s virtually the same.**

**The probability is:**

**P = 1 – the sum of
the probabilities for 0, 1 ... 14 deaths:**

**P = 1 – (prob (0) + prob (1) + prob (2) … + prob (14))**

**In mathematical
notation:**

**P (m > 14) = 1 -
∑ P (i), i=0, 14**

**P (m > 14) = 5.98e-15**

**P (m > 14) = 1 in
167,145,910,421,722 **

**P= 1 in 167 TRILLION!**

This table displays the probability that at least m out of 1400 witnesses would die unnaturally in one year. The probability declines exponentially as the number of deaths increase.

**m**** 1 in**

**0 1**

**1 2**

**2 6**

**3 24**

**4 132**

**5 892**

**6 7,195**

**7 67,346**

**8 718,040**

**9 8,593,044**

**10 114,073,493**

**11 1,663,713,384**

**12 26,445,366,889**

**13 455,051,758,699**

**14 8,427,523,639,942**

**15 167,145,910,421,722
**

**16 3,534,913,873,810,260**

**17 79,526,916,217,848,800**

**18 1,966,037,843,894,810,000**